2.7.4.10. Alternating optimizationΒΆ

The challenge here is that Hessian of the problem is a very ill-conditioned matrix. This can easily be seen, as the Hessian of the first term in simply 2 * K.T @ K. Thus the conditioning of the problem can be judged from looking at the conditioning of K.

import time
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
np.random.seed(0)
K = np.random.normal(size=(100, 100))
def f(x):
return np.sum((K @ (x - 1))**2) + np.sum(x**2)**2
def f_prime(x):
return 2 * K.T @ K @ (x - 1) + 4*np.sum(x**2)*x
def hessian(x):
H = 2 * K.T @ K + 4*2*x*x[:, np.newaxis]
return H + 4*np.eye(H.shape[0])*np.sum(x**2)

Some pretty plotting

plt.figure(1)
plt.clf()
Z = X, Y = np.mgrid[-1.5:1.5:100j, -1.1:1.1:100j]
# Complete in the additional dimensions with zeros
Z = np.reshape(Z, (2, -1)).copy()
Z.resize((100, Z.shape[-1]))
Z = np.apply_along_axis(f, 0, Z)
Z = np.reshape(Z, X.shape)
plt.imshow(Z.T, cmap=plt.cm.gray_r, extent=[-1.5, 1.5, -1.1, 1.1],
origin='lower')
plt.contour(X, Y, Z, cmap=plt.cm.gnuplot)
# A reference but slow solution:
t0 = time.time()
x_ref = sp.optimize.minimize(f, K[0], method="Powell").x
print(f' Powell: time {time.time() - t0:.2f}s')
f_ref = f(x_ref)
# Compare different approaches
t0 = time.time()
x_bfgs = sp.optimize.minimize(f, K[0], method="BFGS").x
print(f' BFGS: time {time.time() - t0:.2f}s, x error {np.sqrt(np.sum((x_bfgs - x_ref) ** 2)):.2f}, f error {f(x_bfgs) - f_ref:.2f}')
t0 = time.time()
x_l_bfgs = sp.optimize.minimize(f, K[0], method="L-BFGS-B").x
print(f' L-BFGS: time {time.time() - t0:.2f}s, x error {np.sqrt(np.sum((x_l_bfgs - x_ref) ** 2)):.2f}, f error {f(x_l_bfgs) - f_ref:.2f}')
t0 = time.time()
x_bfgs = sp.optimize.minimize(f, K[0], jac=f_prime, method="BFGS").x
print(f" BFGS w f': time {time.time() - t0:.2f}s, x error {np.sqrt(np.sum((x_bfgs - x_ref) ** 2)):.2f}, f error {f(x_bfgs) - f_ref:.2f}")
t0 = time.time()
x_l_bfgs = sp.optimize.minimize(f, K[0], jac=f_prime, method="L-BFGS-B").x
print(f"L-BFGS w f': time {time.time() - t0:.2f}s, x error {np.sqrt(np.sum((x_l_bfgs - x_ref) ** 2)):.2f}, f error {f(x_l_bfgs) - f_ref:.2f}")
t0 = time.time()
x_newton = sp.optimize.minimize(f, K[0], jac=f_prime, hess=hessian, method="Newton-CG").x
print(f" Newton: time {time.time() - t0:.2f}s, x error {np.sqrt(np.sum((x_newton - x_ref) ** 2)):.2f}, f error {f(x_newton) - f_ref:.2f}")
plt.show()
plot exercise ill conditioned
     Powell: time 17.19s
BFGS: time 62.90s, x error 0.02, f error -0.02
L-BFGS: time 11.91s, x error 0.02, f error -0.02
BFGS w f': time 6.88s, x error 0.02, f error -0.02
L-BFGS w f': time 0.01s, x error 0.02, f error -0.02
Newton: time 0.01s, x error 0.02, f error -0.02

Total running time of the script: ( 2 minutes 21.078 seconds)

Gallery generated by Sphinx-Gallery