.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "packages/statistics/auto_examples/plot_regression.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_packages_statistics_auto_examples_plot_regression.py: Simple Regression ==================== Fit a simple linear regression using 'statsmodels', compute corresponding p-values. .. GENERATED FROM PYTHON SOURCE LINES 8-19 .. code-block:: default # Original author: Thomas Haslwanter import numpy as np import matplotlib.pyplot as plt import pandas # For statistics. Requires statsmodels 5.0 or more from statsmodels.formula.api import ols # Analysis of Variance (ANOVA) on linear models from statsmodels.stats.anova import anova_lm .. GENERATED FROM PYTHON SOURCE LINES 20-21 Generate and show the data .. GENERATED FROM PYTHON SOURCE LINES 21-32 .. code-block:: default x = np.linspace(-5, 5, 20) # To get reproducable values, provide a seed value np.random.seed(1) y = -5 + 3*x + 4 * np.random.normal(size=x.shape) # Plot the data plt.figure(figsize=(5, 4)) plt.plot(x, y, 'o') .. image-sg:: /packages/statistics/auto_examples/images/sphx_glr_plot_regression_001.png :alt: plot regression :srcset: /packages/statistics/auto_examples/images/sphx_glr_plot_regression_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none [] .. GENERATED FROM PYTHON SOURCE LINES 33-35 Multilinear regression model, calculating fit, P-values, confidence intervals etc. .. GENERATED FROM PYTHON SOURCE LINES 35-52 .. code-block:: default # Convert the data into a Pandas DataFrame to use the formulas framework # in statsmodels data = pandas.DataFrame({'x': x, 'y': y}) # Fit the model model = ols("y ~ x", data).fit() # Print the summary print(model.summary()) # Peform analysis of variance on fitted linear model anova_results = anova_lm(model) print('\nANOVA results') print(anova_results) .. rst-class:: sphx-glr-script-out .. code-block:: none OLS Regression Results ============================================================================== Dep. Variable: y R-squared: 0.804 Model: OLS Adj. R-squared: 0.794 Method: Least Squares F-statistic: 74.03 Date: Tue, 30 May 2023 Prob (F-statistic): 8.56e-08 Time: 18:09:57 Log-Likelihood: -57.988 No. Observations: 20 AIC: 120.0 Df Residuals: 18 BIC: 122.0 Df Model: 1 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ Intercept -5.5335 1.036 -5.342 0.000 -7.710 -3.357 x 2.9369 0.341 8.604 0.000 2.220 3.654 ============================================================================== Omnibus: 0.100 Durbin-Watson: 2.956 Prob(Omnibus): 0.951 Jarque-Bera (JB): 0.322 Skew: -0.058 Prob(JB): 0.851 Kurtosis: 2.390 Cond. No. 3.03 ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. ANOVA results df sum_sq mean_sq F PR(>F) x 1.0 1588.873443 1588.873443 74.029383 8.560649e-08 Residual 18.0 386.329330 21.462741 NaN NaN .. GENERATED FROM PYTHON SOURCE LINES 53-54 Plot the fitted model .. GENERATED FROM PYTHON SOURCE LINES 54-62 .. code-block:: default # Retrieve the parameter estimates offset, coef = model._results.params plt.plot(x, x*coef + offset) plt.xlabel('x') plt.ylabel('y') plt.show() .. image-sg:: /packages/statistics/auto_examples/images/sphx_glr_plot_regression_002.png :alt: plot regression :srcset: /packages/statistics/auto_examples/images/sphx_glr_plot_regression_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.153 seconds) .. _sphx_glr_download_packages_statistics_auto_examples_plot_regression.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_regression.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_regression.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_