.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "packages/scikit-image/auto_examples/plot_segmentations.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_packages_scikit-image_auto_examples_plot_segmentations.py: Watershed and random walker for segmentation ============================================ This example compares two segmentation methods in order to separate two connected disks: the watershed algorithm, and the random walker algorithm. Both segmentation methods require seeds, that are pixels belonging unambigusouly to a reagion. Here, local maxima of the distance map to the background are used as seeds. .. GENERATED FROM PYTHON SOURCE LINES 12-63 .. image-sg:: /packages/scikit-image/auto_examples/images/sphx_glr_plot_segmentations_001.png :alt: image, distance map, watershed segmentation, random walker segmentation :srcset: /packages/scikit-image/auto_examples/images/sphx_glr_plot_segmentations_001.png :class: sphx-glr-single-img .. code-block:: default import numpy as np from skimage.segmentation import watershed from skimage.feature import peak_local_max from skimage import measure from skimage.segmentation import random_walker import matplotlib.pyplot as plt import scipy as sp # Generate an initial image with two overlapping circles x, y = np.indices((80, 80)) x1, y1, x2, y2 = 28, 28, 44, 52 r1, r2 = 16, 20 mask_circle1 = (x - x1) ** 2 + (y - y1) ** 2 < r1 ** 2 mask_circle2 = (x - x2) ** 2 + (y - y2) ** 2 < r2 ** 2 image = np.logical_or(mask_circle1, mask_circle2) # Now we want to separate the two objects in image # Generate the markers as local maxima of the distance # to the background distance = sp.ndimage.distance_transform_edt(image) peak_idx = peak_local_max( distance, footprint=np.ones((3, 3)), labels=image ) peak_mask = np.zeros_like(distance, dtype=bool) peak_mask[tuple(peak_idx.T)] = True markers = measure.label(peak_mask) labels_ws = watershed(-distance, markers, mask=image) markers[~image] = -1 labels_rw = random_walker(image, markers) plt.figure(figsize=(12, 3.5)) plt.subplot(141) plt.imshow(image, cmap='gray', interpolation='nearest') plt.axis('off') plt.title('image') plt.subplot(142) plt.imshow(-distance, interpolation='nearest') plt.axis('off') plt.title('distance map') plt.subplot(143) plt.imshow(labels_ws, cmap='nipy_spectral', interpolation='nearest') plt.axis('off') plt.title('watershed segmentation') plt.subplot(144) plt.imshow(labels_rw, cmap='nipy_spectral', interpolation='nearest') plt.axis('off') plt.title('random walker segmentation') plt.tight_layout() plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.146 seconds) .. _sphx_glr_download_packages_scikit-image_auto_examples_plot_segmentations.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_segmentations.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_segmentations.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_