.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "advanced/mathematical_optimization/auto_examples/plot_gradient_descent.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_advanced_mathematical_optimization_auto_examples_plot_gradient_descent.py: Gradient descent ================== An example demoing gradient descent by creating figures that trace the evolution of the optimizer. .. GENERATED FROM PYTHON SOURCE LINES 8-21 .. code-block:: default import numpy as np import matplotlib.pyplot as plt import scipy as sp import sys, os sys.path.append(os.path.abspath('helper')) from cost_functions import mk_quad, mk_gauss, rosenbrock,\ rosenbrock_prime, rosenbrock_hessian, LoggingFunction,\ CountingFunction x_min, x_max = -1, 2 y_min, y_max = 2.25/3*x_min - .2, 2.25/3*x_max - .2 .. GENERATED FROM PYTHON SOURCE LINES 22-23 A formatter to print values on contours .. GENERATED FROM PYTHON SOURCE LINES 23-39 .. code-block:: default def super_fmt(value): if value > 1: if np.abs(int(value) - value) < .1: out = '$10^{%.1i}$' % value else: out = '$10^{%.1f}$' % value else: value = np.exp(value - .01) if value > .1: out = f'{value:1.1f}' elif value > .01: out = f'{value:.2f}' else: out = f'{value:.2e}' return out .. GENERATED FROM PYTHON SOURCE LINES 40-42 A gradient descent algorithm do not use: its a toy, use scipy's optimize.fmin_cg .. GENERATED FROM PYTHON SOURCE LINES 42-143 .. code-block:: default def gradient_descent(x0, f, f_prime, hessian=None, adaptative=False): x_i, y_i = x0 all_x_i = [] all_y_i = [] all_f_i = [] for i in range(1, 100): all_x_i.append(x_i) all_y_i.append(y_i) all_f_i.append(f([x_i, y_i])) dx_i, dy_i = f_prime(np.asarray([x_i, y_i])) if adaptative: # Compute a step size using a line_search to satisfy the Wolf # conditions step = sp.optimize.line_search(f, f_prime, np.r_[x_i, y_i], -np.r_[dx_i, dy_i], np.r_[dx_i, dy_i], c2=.05) step = step[0] if step is None: step = 0 else: step = 1 x_i += - step*dx_i y_i += - step*dy_i if np.abs(all_f_i[-1]) < 1e-16: break return all_x_i, all_y_i, all_f_i def gradient_descent_adaptative(x0, f, f_prime, hessian=None): return gradient_descent(x0, f, f_prime, adaptative=True) def conjugate_gradient(x0, f, f_prime, hessian=None): all_x_i = [x0[0]] all_y_i = [x0[1]] all_f_i = [f(x0)] def store(X): x, y = X all_x_i.append(x) all_y_i.append(y) all_f_i.append(f(X)) sp.optimize.minimize(f, x0, jac=f_prime, method="CG", callback=store, options={"gtol": 1e-12}) return all_x_i, all_y_i, all_f_i def newton_cg(x0, f, f_prime, hessian): all_x_i = [x0[0]] all_y_i = [x0[1]] all_f_i = [f(x0)] def store(X): x, y = X all_x_i.append(x) all_y_i.append(y) all_f_i.append(f(X)) sp.optimize.minimize(f, x0, method="Newton-CG", jac=f_prime, hess=hessian, callback=store, options={"xtol": 1e-12}) return all_x_i, all_y_i, all_f_i def bfgs(x0, f, f_prime, hessian=None): all_x_i = [x0[0]] all_y_i = [x0[1]] all_f_i = [f(x0)] def store(X): x, y = X all_x_i.append(x) all_y_i.append(y) all_f_i.append(f(X)) sp.optimize.minimize(f, x0, method="BFGS", jac=f_prime, callback=store, options={"gtol": 1e-12}) return all_x_i, all_y_i, all_f_i def powell(x0, f, f_prime, hessian=None): all_x_i = [x0[0]] all_y_i = [x0[1]] all_f_i = [f(x0)] def store(X): x, y = X all_x_i.append(x) all_y_i.append(y) all_f_i.append(f(X)) sp.optimize.minimize(f, x0, method="Powell", callback=store, options={"ftol": 1e-12}) return all_x_i, all_y_i, all_f_i def nelder_mead(x0, f, f_prime, hessian=None): all_x_i = [x0[0]] all_y_i = [x0[1]] all_f_i = [f(x0)] def store(X): x, y = X all_x_i.append(x) all_y_i.append(y) all_f_i.append(f(X)) sp.optimize.minimize(f, x0, method="Nelder-Mead", callback=store, options={"ftol": 1e-12}) return all_x_i, all_y_i, all_f_i .. GENERATED FROM PYTHON SOURCE LINES 144-145 Run different optimizers on these problems .. GENERATED FROM PYTHON SOURCE LINES 145-239 .. code-block:: default levels = {} for index, ((f, f_prime, hessian), optimizer) in enumerate(( (mk_quad(.7), gradient_descent), (mk_quad(.7), gradient_descent_adaptative), (mk_quad(.02), gradient_descent), (mk_quad(.02), gradient_descent_adaptative), (mk_gauss(.02), gradient_descent_adaptative), ((rosenbrock, rosenbrock_prime, rosenbrock_hessian), gradient_descent_adaptative), (mk_gauss(.02), conjugate_gradient), ((rosenbrock, rosenbrock_prime, rosenbrock_hessian), conjugate_gradient), (mk_quad(.02), newton_cg), (mk_gauss(.02), newton_cg), ((rosenbrock, rosenbrock_prime, rosenbrock_hessian), newton_cg), (mk_quad(.02), bfgs), (mk_gauss(.02), bfgs), ((rosenbrock, rosenbrock_prime, rosenbrock_hessian), bfgs), (mk_quad(.02), powell), (mk_gauss(.02), powell), ((rosenbrock, rosenbrock_prime, rosenbrock_hessian), powell), (mk_gauss(.02), nelder_mead), ((rosenbrock, rosenbrock_prime, rosenbrock_hessian), nelder_mead), )): # Compute a gradient-descent x_i, y_i = 1.6, 1.1 counting_f_prime = CountingFunction(f_prime) counting_hessian = CountingFunction(hessian) logging_f = LoggingFunction(f, counter=counting_f_prime.counter) all_x_i, all_y_i, all_f_i = optimizer(np.array([x_i, y_i]), logging_f, counting_f_prime, hessian=counting_hessian) # Plot the contour plot if not max(all_y_i) < y_max: x_min *= 1.2 x_max *= 1.2 y_min *= 1.2 y_max *= 1.2 x, y = np.mgrid[x_min:x_max:100j, y_min:y_max:100j] x = x.T y = y.T plt.figure(index, figsize=(3, 2.5)) plt.clf() plt.axes([0, 0, 1, 1]) X = np.concatenate((x[np.newaxis, ...], y[np.newaxis, ...]), axis=0) z = np.apply_along_axis(f, 0, X) log_z = np.log(z + .01) plt.imshow(log_z, extent=[x_min, x_max, y_min, y_max], cmap=plt.cm.gray_r, origin='lower', vmax=log_z.min() + 1.5*log_z.ptp()) contours = plt.contour(log_z, levels=levels.get(f, None), extent=[x_min, x_max, y_min, y_max], cmap=plt.cm.gnuplot, origin='lower') levels[f] = contours.levels plt.clabel(contours, inline=1, fmt=super_fmt, fontsize=14) plt.plot(all_x_i, all_y_i, 'b-', linewidth=2) plt.plot(all_x_i, all_y_i, 'k+') plt.plot(logging_f.all_x_i, logging_f.all_y_i, 'k.', markersize=2) plt.plot([0], [0], 'rx', markersize=12) plt.xticks(()) plt.yticks(()) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.draw() plt.figure(index + 100, figsize=(4, 3)) plt.clf() plt.semilogy(np.maximum(np.abs(all_f_i), 1e-30), linewidth=2, label='# iterations') plt.ylabel('Error on f(x)') plt.semilogy(logging_f.counts, np.maximum(np.abs(logging_f.all_f_i), 1e-30), linewidth=2, color='g', label='# function calls') plt.legend(loc='upper right', frameon=True, prop=dict(size=11), borderaxespad=0, handlelength=1.5, handletextpad=.5) plt.tight_layout() plt.draw() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_001.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_001.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_002.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_002.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_003.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_003.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_004.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_004.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_005.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_005.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_006.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_006.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_007.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_007.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_008.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_008.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_009.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_009.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_010.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_010.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_011.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_011.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_012.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_012.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_013.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_013.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_014.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_014.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_015.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_015.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_016.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_016.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_017.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_017.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_018.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_018.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_019.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_019.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_020.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_020.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_021.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_021.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_022.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_022.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_023.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_023.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_024.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_024.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_025.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_025.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_026.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_026.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_027.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_027.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_028.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_028.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_029.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_029.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_030.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_030.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_031.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_031.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_032.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_032.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_033.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_033.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_034.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_034.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_035.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_035.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_036.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_036.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_037.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_037.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_038.png :alt: plot gradient descent :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_gradient_descent_038.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none /opt/buildhome/python3.8/lib/python3.8/site-packages/scipy/optimize/_linesearch.py:457: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) /opt/buildhome/python3.8/lib/python3.8/site-packages/scipy/optimize/_linesearch.py:306: LineSearchWarning: The line search algorithm did not converge warn('The line search algorithm did not converge', LineSearchWarning) /opt/build/repo/advanced/mathematical_optimization/examples/plot_gradient_descent.py:194: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`. plt.figure(index, figsize=(3, 2.5)) /opt/build/repo/advanced/mathematical_optimization/examples/plot_gradient_descent.py:137: OptimizeWarning: Unknown solver options: ftol sp.optimize.minimize(f, x0, method="Nelder-Mead", callback=store, options={"ftol": 1e-12}) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 6.098 seconds) .. _sphx_glr_download_advanced_mathematical_optimization_auto_examples_plot_gradient_descent.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_gradient_descent.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_gradient_descent.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_